Biodegradable glitter made entirely from plants is just as bad as plastic

I originally posted the second article on November 21, 2021. Unfortunately, the “good news” was typical greenwashing as the product is every bit as bad as other plastics. Have kept the original article below. Here is the explanation of the problem:
https://www.theguardian.com/money/2020/oct/15/eco-glitter-causes-same-damage-to-rivers-as-ordinary-product-study?CMP=share_btn_link For more information see the comments to the original article which I hope are still below.

The original article’s link is:
http://www.fastcompany.com/90695646/this-new-biodegradable-glitter-is-made-entirely-from-plants?

Eco glitter causes same damage to rivers as ordinary product – study

This article is more than 1 year old

All types of glitter affect life forms at base of food web, say researchers at Cambridge

The study is thought to the first to examine the environmental effects of glitter.
The study is thought to the first to examine the environmental effects of glitter. Photograph: Kate Medetbayeva/Alamy

Sandra Laville Thu 15 Oct 2020 02.00 EDT

Biodegradable glitter causes the same ecological damage to rivers and lakes as the ordinary product, according to the first study of its kind on the impact of the microplastic on the environment.

Tests on ordinary glitter and so-called biodegradable or “eco glitter” were carried out by Anglia Ruskin University (ARU) in Cambridge.

The production of biodegradable glitter has increased as consumers are urged to turn to apparently environmentally friendly alternatives to glitter made from a type of plastic known as PET.

Sixty festivals in the UK announced they would switch to biodegradable glitter instead of PET glitter by 2021, but the study says the biological or ecological effects of any type of glitter, conventional or biodegradable, have never been tested. The Anglia Ruskin study is thought to be the first to examine the environmental impacts of glitter.

One version of eco glitter has a core of modified regenerated cellulose (MRC), sourced mainly from eucalyptus trees, which is coated with aluminium for reflectivity and then topped with a thin plastic layer. Another form is mica glitter, which is increasingly used in cosmetics.

The research found that the alternative “biodegradable” glitters had several effects similar to those observed for conventional PET glitter, meaning they could be causing ecological damage to rivers and lakes.

The study found that the effects of MRC and mica glitters on root length and chlorophyll levels were almost identical to those of traditional glitter.

Dr Dannielle Green, a senior lecturer in biology at ARU, said: “Glitter is a ready-made microplastic that is commonly found in our homes and, particularly through cosmetics, is washed off in our sinks and into the water system.

“Our study is the first to look at the effects of glitter in a freshwater environment and we found that both conventional and alternative glitters can have a serious ecological impact on aquatic ecosystems within a short period of time.”

She said all types, including so-called biodegradable glitter, had a negative effect on important primary producers that are the base of the food web. “Biodegradable” cellulose-based glitter had an additional negative impact in that it encouraged the growth of an invasive species, the New Zealand mud snail.

“We believe these effects could be caused by leachate from the glitters, possibly from their plastic coating or other materials involved in their production,” she said.

The supermarket chain Morrisons has announced it has removed glitter and plastic from all its own-brand ranges before Christmas, including cards, crackers, wrapping paper, present bags, flowers, plants and wreaths and non-seasonal items. It said the decision would remove more than 50 tonnes of plastic from its shelves over Christmas alone.

Waitrose and John Lewis also announced they have removed glitter from all their crackers, cards, wrapping paper and gift bags for Christmas.

This new biodegradable glitter is made entirely from plants

Almost all of the glitter you’ve ever used is still floating around the planet. This new formulation has just one ingredient, but it’s still as shimmery as the original.

[Photo: courtesy University of Cambridge]

Anyone who’s swiped on a sparkly eyeshadow or used glitter for arts and crafts knows that those tiny, shimmering pieces are hard to clean up—in more ways than one. Glitter gets everywhere, and since most glitter is made of plastic, it doesn’t disappear. But scientists say they’ve now made a glitter completely out of plants that can actually biodegrade, without compromising any sparkle.

Though small, glitter can be a big environmental problem. When glitter is added to cosmetics, it often ends up getting washed off, and the microplastic pieces make their way into rivers and oceans. So-called sustainable glitters haven’t been much better. While some plant-based glitters do already exist, they’re usually wrapped in materials like aluminum or plastic polymer film in order to give them their shimmer, coatings that don’t biodegrade; or, they need perfect composting conditions to disappear.

[Photo: courtesy University of Cambridge]

Mica and titanium dioxide, minerals used in “natural glitters,” have their own issues: mining the former is a practice fraught with child labor; the latter has been banned in the European Union because of its potentially toxic, carcinogenic effects, especially if digested.[Image: courtesy University of Cambridge]Researchers at the University of Cambridge say their cellulose-based glitter solves all these problems, for a safer, sustainable sparkle. The first pieces of this glitter were made from wood-pulp, which the researchers detail in the journal Nature Materials, but any plant product with easily extractable cellulose could be used, like cotton or even a “waste product” such as mango peels, banana peels, or coffee bean skins, says Silvia Vignolini, a chemistry professor at the university and senior author of a paper. (And since it’s only made from cellulose, it can also be safely eaten, the researchers say.)

[Photo: courtesy University of Cambridge]

To get their cellulose glitter to give off that iconic, multicolored twinkle, they didn’t add any plastic coatings or aluminum layers. Instead, they used a process called “structural coloration,” in which microscopic structural surfaces bend light waves in such a way that they produce pigments. Structural colors can be seen in nature, like on an iridescent peacock feather or the metallic-looking blue of marble berries.

“The cellulose nanocrystals are organized in such a way that they can make color,” says Benjamin Droguet, also from the school’s chemistry department and first author of the paper. The nanocrystals form a helicoidal structure, meaning the layers rotate as if arranged in a spiral. Think of it as a staircase, he says. “The way to control the color is by simply changing the size of those helicoids, so we can imagine a staircase with levels that are different distances from each other. The larger the features, the longer the wavelengths of light that will be reflected,” which then changes the colors that we see.

[Photo: courtesy University of Cambridge]

The cellulose particles they used from wood pulp spontaneously form these structures through a process called self-assembly: the cellulose crystals align, and then twist. But to actually turn this into glitter, the researchers had to create large-scale cellulose films, and they did that by packing cellulose into water, As the water evaporates, it forces the materials to contract, which prompts that self-assembly into those spiraling, light-reflecting colors. They could then grind that film of colorful cellulose down into tiny particles of glitter. Because the only ingredient is plants, no matter what happens to the glitter, it will eventually biodegrade.

[Photo: courtesy University of Cambridge]

With this method, the researchers don’t need to add anything to the cellulose to create shimmering colors. “Cellulose by itself is a transparent material,” Vignolini says. It’s when you organize and structure it on this kind of scale that it can provide color. “Think about a soap bubble,” she says. “Water is transparent, but as soon as you create that soap bubble layer, then you start to see colors.” The researchers’ main goal, she adds, is to find a more sustainable solution for pigment in general. The way we make any artificial colors often requires a chemical-heavy, energy-heavy process.

[Photo: courtesy University of Cambridge]

Using these all-cellulose pigments and glitters could be revolutionary for the cosmetics industry in particular. In Europe, the cosmetics industry uses about 5,000 tonnes of microplastics every year. The Nature Materials paper proves that this biodegradable, cellulose glitter can be produced on industrial machines, via those rolls of cellulose films. The next step is to scale the production up to even larger equipment and commercialize their pigments and glitters in the coming years. “Right now, with glitter, people don’t necessarily think about it as having a big impact on the environment,” Droguet says “but the fact is, those shiny particles are used everywhere.” Eventually these biodegradable cellulose ones may be everywhere—at least temporarily—instead.

5 thoughts on “Biodegradable glitter made entirely from plants is just as bad as plastic

  1. https://www.theguardian.com/money/2020/oct/15/eco-glitter-causes-same-damage-to-rivers-as-ordinary-product-study?CMP=share_btn_link

    This product causes as much damage to the environment as plastic because it behaves exactly like a microplastic.

    The same company that make this cellulose glitter, distribute and manufacture 90% of the world’s plastic glitter too. Their science misleads the public and ensures glitter remains polluting everything it touches.

    Every material glitter is mixed with, becomes unrecyclable.

    Liked by 1 person

      1. Also, I supported the “bio” products for a couple of years until I started asking for data sheets off the supplier and realised they were hiding things

        Like

  2. Thanks so much.

    I’ve worked in waste reduction for +30 years and glitter of all kinds has been a constant thorn in the side of recycling.
    The company responsible for this cellulose replacement, still sell 90% of the world’s plastic glitter, and since they launched their ‘safe’ version, both types of product have had a massive upsurge in Popularity. It’s even worse than before because people think it’s now all safe.
    And sellers buy the cheap plastic version to pass off as the newer stuff too.

    I’ve produced “20 reasons to bam glitter” if your keen feel free to copy/edit the info from it

    https://docs.google.com/document/d/1z6CwIHvYfzXjhLT4IKIZIc4i_0fyj5r0S3lvwVFNXRk/edit?usp=drivesdk

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.